千教网
输入关键词,搜索您要的课件,教案,试题
您的位置: 千教网 >> 数学试题下载 >>北师大版八年级下《第一章三角形的证明》单元测试题(有答案)-(数学)

欢迎您到“千教网”下载“北师大版八年级下《第一章三角形的证明》单元测试题(有答案)-(数学)”的资源,本文档是docx格式,无须注册即可下载,点击“本地下载”即可下载
北师大版八年级下《第一章三角形的证明》单元测试题(有答案)-(数学)
所属科目:数学    文件类型:docx
类别:试题、练习
上传日期:2018/12/5  
相关资源:
人教版八年级上册数学《第13章轴对称》单元练习(有答案)

2018秋人教版八年级数学上册《第13章轴对称》单元测试题有答案

人教版数学八年级上册《第11章三角形》单元测试题(有答案)

苏科新版数学八年级上册《第4章实数》单元测试卷(有答案)

苏科版数学八年级上册《第6章一次函数》单元测试卷(有答案)

人教版八年级数学上册《第15章分式》单元检测卷(有答案)

人教新版数学八年级上册《第13章轴对称》单元测试(有答案)

2018年秋人教版八年级上册《第13章轴对称》单元测试卷(有答案)-(数学)

人教版八年级数学上册《第13章轴对称》单元测试题(有答案)

北师大版八年级数学上册《第3章位置与坐标》单元测试(有答案)

人教版八年级上《第11章三角形》单元提升试卷((有答案))-(数学)

新人教版八年级数学上册《第11章三角形》单元测试(有答案)

温馨提示:本站所有教学资源均是完全免费提供!内容简介下方即有下载连接!

下载步骤:直接点击即可下载

注意:1.源文件中的公式,图片,在下边的内容预览中被忽略!(文档内容预览在最下方)

    2.下载链接在下方,无需注册直接可下载!

文档内容预览:
  
第一章 三角形的证明
一、选择题(本大题共8小题,每小题4分,共32分)
1.等腰三角形两边的长分别为3和6,则这个等腰三角形的周长为(  )
A.12B.15C.12或15D.18
2.如图1,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是(  )

图1
A.BC=EC,∠B=∠E
B.BC=EC,AC=DC
C.BC=DC,∠A=∠D
D.∠B=∠E,∠A=∠D
3.下列命题的逆命题是真命题的是(  )
A.如果a>0,b>0,则a+b>0
B.直角都相等
C.两直线平行,同位角相等
D.若a=6,则|a|=|6|
4.如图2,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A,C两地相距(  )

图2
A.30海里 B.40海里
C.50海里 D.60海里
5.如图3,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是(  )

图3
A.3.5B.4.2C.5.8D.7
6.如图4,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C,D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是(  )

图4
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C,D两点关于OE所在直线对称
D.O,E两点关于CD所在直线对称
7.如图5,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是(  )

图5
A.6B.5C.4D.3
8.如图6,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要(  )

图6
A.11cm B.2cm
C.(8+2)cm D.(7+3)cm
二、填空题(本大题共6小题,每小题4分,共24分)
9.已知等腰三角形的一个底角为70°,则它的顶角为________.
10.用反证法证明“一个三角形中不可能有两个角是直角”时,第一步应假设________________________________________________________________________.
11.如图7,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长为________cm.

图7
12.如图8,在△ABC中,AB+AC=6cm,BC的垂直平分线l与AC交于点D,则△ABD的周长为________cm.
13.如图9,在长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.

图9
14.如图10,∠BOC=60°,A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形.

图10
三、解答题(本大题共4小题,共44分)
15.(10分)如图11,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E.若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.

图11


16.(10分)如图12,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点O.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,写出DO与AD之间的数量关系,并证明.

图12

17.(12分)如图13,在等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.
(1)△DBC和△EAC全等吗?请说出你的理由;
(2)试说明AE∥BC.

图13





18.(12分)如图14,在△ABC中,∠A=90°,∠B=30°,AC=6cm,点D从点A开始以1cm/s的速度向点C运动,点E从点C开始以2cm/s的速度向点B运动,两点同时运动,同时停止,运动的时间为ts,过点E作EF∥AC交AB于点F.
(1)当t为何值时,△DEC为等边三角形?
(2)当t为何值时,△DEC为直角三角形?
(3)求证:DC=EF.

图14





详解详析


考查意图
 经历探索、猜测、证明的过程,了解作为证明基础的几条定理的内容,掌握证明的基本步骤和书写格式,能够用综合法证明等腰三角形的性质定理和判定定理,体会证明的重要性;能够证明与三角形、线段垂直平分线、角平分线等有关的性质定理和判定定理,培养学生的逆向思维能力,增强论证趣味性,激发学生学习数学的兴趣和信心,同时体会逻辑证明在实际中的意义和作用.本套试卷易、中、难比例控制在7∶2∶1左右

知识与技能
三角形全等
2,17


等腰三角形
1,4,9,14,18


勾股定理及其逆定理
13,15(2)


线段的垂直平分线
12,13,16


角平分线
6,11,15(1)

思想方法
方程思想、转化思想、分类讨论思想
13,14

亮点
 第12题要注意把△ABD的周长转化为线段AB+AC的长


1.[解析]B ①当3为底边长时,腰长为6,可以构成三角形,此时三角形的周长为15;②当3为腰长时,其他两边长为3和6.∵3+3=6,∴不能构成三角形,故舍去.故选B.
2.[答案]C
3.[解析] C A项,“如果a>0,b>0,则a+b>0”的逆命题是“如果a+b>0,则a>0,b>0”,是假命题;B项,“直角都相等”的逆命题是“相等的角是直角”,是假命题;C项,“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是真命题;D项,“若a=6,则|a|=|6|”的逆命题是“若|a|=|6|,则a=6”,是假命题.故选C.
4.[解析]B 连接AC.由题意得∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=40海里.故选B.
5.[答案]D
6.[解析]D 由作图可知射线OE是∠AOB的平分线,OC=OD,所以△COD是等腰三角形;易证OE⊥CD,且OE平分CD,即C,D两点关于OE所在直线对称,故选项A,B,C均正确.只有选项D错误.
7.[解析]D ∵AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DF=DE=2.又∵S△ABC=S△ABD+S△ACD,AB=4,∴7=×4×2+AC×2,∴AC=3.故选D.
8.[答案]B
9.[答案]40°
[解析]因为等腰三角形的一个底角为70°,所以另外一个底角也为70°,根据三角形内角和定理,可得它的顶角为40°.
10.[答案] 一个三角形中有两个角是直角
[解析]用反证法证明一个三角形中不能有两个角是直角时,应先假设这个三角形中有两个角是直角.
11.[答案]6
12.[答案]6
[解析]根据线段垂直平分线的性质定理,得BD=DC,所以所求△ABD的周长就转化为求线段AB,AD,DC的和,即AB+AC,所以△ABD的周长为6cm.
13.[答案]
[解析]根据线段垂直平分线上的点到线段两端点的距离相等可知AE=EC.设AE=x,则EC=x,DE=3-x,DC=2,在Rt△DCE中,有22+(3-x)2=x2,解得x=.所以CE的长为.
14.[答案]或10
[解析]当点P在OA上,PO=QO时,△POQ是等腰三角形,如图①所示.∵PO=AO-AP=10-2t,OQ=t,
∴10-2t=t,解得t=;
当点P在OB上,PO=QO时,△POQ是等腰三角形,如图②所示.
∵PO=AP-AO=2t-10,OQ=t,
∴2t-10=t,解得t=10.
故答案为:或10.

15.解:(1)∵∠C=90°,∴AC⊥CD.
又AD平分∠CAB,DE⊥AB,
∴DE=CD.
又CD=3,∴DE=3.
(2)在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB===10,
∴S△ADB=AB·DE=×10×3=15.
16.解:(1)证明:∵AD为△ABC的角平分线,
DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°.
在Rt△AED和Rt△AFD中,
∵DE=DF,AD=AD,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF.
又∵DE=DF,
∴点A,D都在EF的垂直平分线上,
∴AD垂直平分EF.
(2)DO=AD.
证明:∵AD为△ABC的角平分线,∠BAC=60°,∴∠EAD=30°,∴DE=AD.
∵∠EAD=30°,DE⊥AB,AD⊥EF,
∴∠DEO=30°,
∴DO=DE,∴DO=AD.
17.解:(1)△DBC和△EAC全等.
理由:∵△ABC和△EDC都是等边三角形,∴∠ACB=60°,∠DCE=60°,AC=BC,DC=EC,
∴∠BCD=60°-∠ACD,∠ACE=60°-∠ACD,
∴∠BCD=∠ACE.
在△DBC和△EAC中,
∵BC=AC,∠BCD=∠ACE,DC=EC,
∴△DBC≌△EAC(SAS).
(2)∵△DBC≌△EAC,
∴∠EAC=∠B=60°.
又∵∠ACB=60°,
∴∠EAC=∠ACB,
∴AE∥BC.
18.解:由题意得AD=tcm,CE=2tcm.
(1)若△DEC为等边三角形,则EC=DC,
∴2t=6-t,解得t=2,
∴当t为2时,△DEC为等边三角形.
(2)若△DEC为直角三角形,当∠CED=90°时,
∵∠B=30°,∴∠ACB=60°,∴∠CDE=30°,
∴CE=DC,∴2t=(6-t),解得t=1.2;
当∠CDE=90°时,同理可得∠CED=30°,
∴CE=DC,
∴×2t=6-t,∴t=3,
∴当t为1.2或3时,△DEC为直角三角形.
(3)证明:∵∠A=90°,∠B=30°,AC=6cm,
∴BC=12cm,
∴DC=(6-t)cm,BE=(12-2t)cm.
∵EF∥AC,
∴∠BFE=∠A=90°.
∵∠B=30°,
∴EF=BE=(12-2t)=(6-t)cm,
∴DC=EF.
[点评] 本题考查了等边三角形的性质、直角三角形的性质、角平分线的定义、等腰三角形的判定和性质、平行线的性质,正确地识别图形是解题的关键.
关于资源的下载性声明:千教网本身不提供任何资源的下载服务,也不会保存任何数据在服务器上。所有资源的下载,均源于互联网抓取。当该资源的原始地址失效时,您可能无法获取该资源。
关于本站 | 免责声明 | 广告联系 | 网站提交 | 网友留言 | 联系我们