千教网
输入关键词,搜索您要的课件,教案,试题
您的位置: 千教网 >> 中考试题下载 >>2018年宁德市初中毕业班质量检测数学试题有答案

欢迎您到“千教网”下载“2018年宁德市初中毕业班质量检测数学试题有答案”的资源,本文档是rar格式,无须注册即可下载,点击“本地下载”即可下载
2018年宁德市初中毕业班质量检测数学试题有答案
所属科目:中考试题    文件类型:rar
类别:试题、练习
上传日期:2018/5/15  
相关资源:
(真题)广西北海市2018年中考数学试题有答案(Word版)

(真题)2018年江苏省常州市中考数学试题(Word版)

(真题)2018年宁夏回族自治区中考数学试卷(Word版)

(真题)贵州省安顺市2018年中考数学试题(有答案)(Word版)

(真题)2018年上海市中考数学试卷(Word版)

(真题)娄底市2018年中考数学试卷(有答案)(word版)

(真题)山东省济宁市2018年中考数学试卷有答案(word版)

(真题)济宁市2018年中考数学试卷(有答案)(PDF版)

(真题)贵州省贵阳市2018年中考数学试题有答案(word版)

(真题)随州市2018年中考数学试题(有答案)(word版)

(真题)2018年北京市中考数学试卷(有答案)(2)(Word版)

(真题)2018年宁波市中考数学试题(有答案)(Word版)

温馨提示:本站所有教学资源均是完全免费提供!内容简介下方即有下载连接!

下载步骤:直接点击即可下载

注意:1.源文件中的公式,图片,在下边的内容预览中被忽略!(文档内容预览在最下方)

    2.下载链接在下方,无需注册直接可下载!

文档内容预览:
  
该压缩文件包含以下内容:
2018年宁德初中数学质检14稿.doc
2018年宁德初中数学质检答案6稿.doc
2018年宁德初中数学质检答题卡.doc

“2018年宁德初中数学质检14稿.doc”内容如下:


2018年宁德市初中毕业班质量检测
数 学 试 题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页.满分150分.
注意事项:
1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号,姓名是否一致.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.
3.作图可先使用2B铅笔画出,确定后必须0.5毫米黑色签字笔描黑.
4.考试结束,考生必须将试题卷和答题卡一并交回.
第 Ⅰ 卷
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.的值是
A. B. C. D.
2.如图,若a∥b,∠1=58°,则∠2的度数是
A.58° B.112°
C.122° D.142°
3.下列事件是必然事件的是
A.2018年5月15日宁德市的天气是晴天
B.从一副扑克中任意抽出一张是黑桃
C.在一个三角形中,任意两边之和大于第三边
D.打开电视,正在播广告
4.由6个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是
A.主视图的面积最大 B.左视图的面积最大
C.俯视图的面积最大 D.三种视图的面积相等
5.不等式组的解集在数轴上表示正确的是



6.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(-2 ,0), N的坐标为(2 ,0),则在第二象限内的点是
A.A点 B.B点
C.C点 D.D点
7.在“创文明城,迎省运会”合唱比赛中,10位评委给某队的评分如下表所示,则下列说法正确的是
成绩(分)
9.2
9.3
9.4
9.5
9.6

人数
3
2
3
1
1



A.中位数是9.4分 B.中位数是9.35分
C.众数是3和1 D.众数是9.4分
8.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是
A.∠BDO=60° B.∠BOC=25°
C.OC=4 D.BD=4
9.某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4 000元,购买篮球用了2 800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是
A.足球的单价 B.篮球的单价
C.足球的数量 D.篮球的数量
10.如图,已知等腰△ABC,AB=BC,D是AC上一点,线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关系正确的是
A. B.
C. D.
第 Ⅱ 卷
注意事项:
1.用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.
2.作图可先使用2B铅笔画出,确定后必须0.5毫米黑色签字笔描黑.
二、填空题:本题共6小题,每小题4分,共24分.
11.2017年10月18日,中国共产党第十九次全国代表大会在北京隆重召开.从全国近89 400 000党员中产生的2 300名代表参加了此次盛会.将数据89 400 000用科学记数法表示为 .
12.因式分解:= .
13.小明同学在计算一个多边形的内角和时,由于粗心少算了一个内角,结果得到的总和是800°,则少算了这个内角的度数为 .
14. 已知一次函数,不论k为何值,该函数的图像都经过点A,则点A的坐标为 .
15.小丽计算数据方差时,使用公式,则公式中= .
16.如图,点A,D在反比例函数的图像上,点B,C在反比例函数的图像上.若AB∥CD∥x轴,AC∥y轴,且AB=4,AC=3,CD=2,则n= .

三、解答题:本题共9小题,共86分.
17.(本题满分8分)计算:.

18.(本题满分8分)如图,在△ABC中, D,E分别是AB,AC的中点,△ABC的角平分线AG交DE于点F,若∠ABC =70°,∠BAC=54°,求∠AFD的度数.





19.(本题满分8分)首届数字中国建设峰会于4月22日至24日在福州海峡国际会展中心如期举行,某校组织115位师生去会展中心参观,决定租用A,B两种型号的旅游车.已知一辆A型车可坐20人,一辆B型车可坐28人,经测算学校需要租用这两种型号的旅游车共5辆.学校至少要租用B型车多少辆?

20.(本题满分8分)某中学为推动“时刻听党话 永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:









(1)本次共调查了 名学生;
(2)将图1的统计图补充完整;
(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.

21.(本题满分8分)如图,已知矩形ABCD,E是AB上一点.
(1)如图1,若F是BC上一点,在AD,CD上分别截取DH=BF,DG=BE.
求证:四边形EFGH是平行四边形;
如图2,利用尺规分别在BC,CD,AD上确定点F,G,H,使得四边形EFGH是特殊的平行四边形.(提示:①保留作图痕迹,不写作法;②只需作出一种情况即可)






22.(本题满分10分)若正整数a,b,c满足,则称正整数a,b,c为一组和谐整数.
(1)判断2,3,6是否是一组和谐整数,并说明理由;
(2)已知x,y,z(其中)是一组和谐整数,且,,用含m的代数式表示z,并求当时m的值.

23.(本题满分10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的长.

24.(本题满分13分)如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.
(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.
求证:△AGD∽△AHE;
(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;
(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.







25.(本题满分13分)已知抛物线的图像过点A(3,m).
(1)当a=-1,m=0时,求抛物线的顶点坐标;
(2)若P(t,n)为该抛物线上一点,且
…………………………
余下内容暂不显示,请下载查看完整内容

“2018年宁德初中数学质检答案6稿.doc”内容如下:


2018年宁德市初中毕业班质量检测
数学试题参考答案及评分标准
⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.
⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.
⑶解答右端所注分数表示考生正确作完该步应得的累加分数.
⑷评分只给整数分,选择题和填空题均不给中间分.
一、选择题:(本大题有10小题,每小题4分,满分40分)
1.B 2.C 3.C 4.A 5.D 6.A 7.B 8.D 9.D 10.B
二、填空题:(本大题有6小题,每小题4分,满分24分)
11. 12. 13.100 14.(-2,3) 15.11 16.
三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)
17.(本题满分8分)
解:原式= 6分
= 8分
18.(本题满分8分)
证明:∵∠BAC=54°,AG平分∠BAC,
∴∠BAG =∠BAC =27°. 2分
∴∠BGA =180 °-∠ABC -∠ BAG=83° 4分
又∵点D,E分别是AB,AC的中点,
∴DE∥BC. 6分
∴∠AFD =∠BGA =83°. 8分
19.(本题满分8分)
解: 设租用B型车x辆,则租用A型车(5-x)辆,根据题意,得 1分
. 5分
解得 . 7分
因为x为整数,所以x的最小值是2.
答:学校至少租用了2辆B型车. 8分
20.(本题满分8分)
(1)40; 2分
(2)图略 4分
(3)列表如下: 6分

男
男
男
女

男

(男,男)
(男,男)
(男,女)

男
(男,男)

(男,男)
(男,女)

男
(男,男)
(男,男)

(男,女)

女
(女,男)
(女,男)
(女,男)


总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率是,即. 8分
21.(本题满分8分)
(1)证明:∵四边形ABCD是矩形,
∴AD=BC,AB=CD,∠A =∠B =∠C =∠D =90°,
∵DG=BE,DH=BF,
∴△GDH≌△EBF. 2分
∴GH = EF.
∵AD=BC,AB=CD,DH=BF,DG=BE,
∴AD-DH=BC-BF,AB-BE=CD-DG.
即AH=CF,AE=CG.
∴△AEH≌△CGF. 4分
∴EH=GF.
∴四边形EFGH是平行四边形. 5分
(2)作图如下:
作法一:作菱形(如图2) 7分
∴四边形EFGH就是所求作的特殊平行四边形. 8分
作法二:作矩形(如图3,图4) 7分







∴四边形EFGH就是所求作的特殊平行四边形. 8分
22.(本题满分10分)
(1)是 1分
理由如下:
∵,满足和谐整数的定义,
∴2,3,6是和谐整数. 4分
(2) 解:∵,
依题意,得 .
∵,,
∴.
∴. 7分
∵,
∴.
解得 . 9分
∵x是正整数,
∴. 10分
23.(本题满分10分)
解:(1)证明:连接OD.
∵ OD=OE,
∴∠ODE=∠OED. 1分
∵直线BC为⊙O的切线,
∴OD⊥BC.
∴∠ODB=90°. 2分
∵∠ACB=90°,
∴OD∥AC . 3分
∴∠ODE=∠F.
∴∠OED=∠F. 4分
∴AE=AF. 5分
(2)连接AD.
∵AE是⊙O的直径
∴∠ADE=90°. 6分
∵AE=AF,
∴DF=DE=3.
∵∠ACB=90°.
∴∠DAF+∠F=90°,∠CDF+∠F=90°,
∴∠DAF=∠CDF=∠BDE. 7分
在Rt△ADF中,

∴. 8分
在Rt△CDF中,

∴. 9分
∴AC=AF-CF=8. 10分
24.(本题满分13分)
解:(1)由题意知△ABC和△ADE都是等腰直角三角形,
∴∠B=∠DAE=45°.
∵G为AB中点,H为BC中点,
∴AH⊥BC.
∴∠BAH=45°=∠DAE.
∴∠GAD =∠HAE. 1分
在等腰直角△BAH和等腰直角△DAE中,
,.
∴. 3分
∴△AGD∽△AHE. 4分
(2)当BD=0或或时,△ABE是等腰三角形. 8分
(注:给出0和各得1分,给出得2分)
(3)解法一:
当点D与点B重合时,点E的位置记为点M.
此时,∠ABM =∠BAC=90°,∠AMB=∠BAM=45°,BM= AB= AC.
∴四边形ABMC是正方形.
∴∠BMC=90°,
∴∠AMC=∠BMC-∠AMB=45°, 9分
∵∠BAM=∠DAE=45°,
∴∠BAD =∠MAE,
在等腰直角△BAM和等腰直角△DAE中,
,.
∴.
∴△ABD∽△AME.
∴∠AME=∠ABD=45°
∴点E在射线MC上. 10分
作点B关于直线MC的对称点N,连接AN交MC于点E′,
∵BE+AE =NE+AE≥AN=NE′+AE′=BE′+AE′,
∴△ABE′就是所求周长最小的△ABE.
在Rt△ABN中,
∵AB=4,BN=2BM=2AB =8,
∴AN=.
∴△ABE周长最小值为.
13分
解法二:取BC的中点H,连接AH,
同解法一证△ACE∽△AHD.
∴∠ACE=∠AHD=90°.
∴点E在过点C且垂直于AC的直线上,记为直线l. 10分
点A关于直线l的对称点M,连接BM交直线l于点E′,
同解法一,△ABE′就是所求周长最小的△ABE.
∴△ABE周长最小值为. 13分
25.(本题满分13分)
解:(1)当a=-1,m=0时,
,A点的坐标为(3,0),
∴-9+6+c=0.
解得 c=3. 2分
∴抛物线的表达式为.
即.
∴抛物线的顶点坐标为(1,4). 4分
(2)∵的对称轴为直线, 5分
∴点A关于对称轴的对称点为(-1,m). 6分
∵,
∴当,y随x的增大而增大; 当,y随x的增大而减小.
又∵n<m,
∴当点P在对称轴左边时,t<-1;
当点P在对称轴右边时,t>3.
综上所述:t的取值范围为t<-1或t>3. 8分
(3)∵点Q(x,y)在抛物线上,
∴.
又∵QD⊥x轴交直线 于点D ,
∴D点的坐标为(x,kx+c).
又∵点Q是抛物线上点B,C之间的一个动点,
…………………………
余下内容暂不显示,请下载查看完整内容

“2018年宁德初中数学质检答题卡.doc”内容如下:


















一、














































































































































































































































































到首页查看更多
关于资源的下载性声明:千教网本身不提供任何资源的下载服务,也不会保存任何数据在服务器上。所有资源的下载,均源于互联网抓取。当该资源的原始地址失效时,您可能无法获取该资源。
关于本站 | 免责声明 | 广告联系 | 网站提交 | 网友留言 | 联系我们