千教网
输入关键词,搜索您要的课件,教案,试题
您的位置: 千教网 >> 数学课件,教案下载 >>(沪科版)八年级上第12章《一次函数》单元测试(有答案)

欢迎您到“千教网”下载“(沪科版)八年级上第12章《一次函数》单元测试(有答案)”的资源,本文档是doc格式,无须注册即可下载,点击“本地下载”即可下载
(沪科版)八年级上第12章《一次函数》单元测试(有答案)
所属科目:数学    文件类型:doc
类别:教案/同步练习
上传日期:2018/8/7  
相关资源:
浙教版数学八年级上册第5章《一次函数》测试题有答案(PDF版)

2019版山东省泰安中考数学一轮复习《第10讲:一次函数》课件

2019版泰安中考数学一轮复习《第10讲:一次函数》精练(有答案)

2019云南省中考数学一轮复习《第11讲:一次函数》课件

2019届百色市中考《第11课时:一次函数》同步练习(有答案)

2019届百色市中考数学《第11课时:一次函数》复习课件

2019届百色市中考数学《第11课时:一次函数》精讲精练

北师大八年级数学上册《第四章一次函数》单元测试题(有答案)

2018年秋北师大版八年级上册《第四章一次函数》单元测试有答案

2018年中考数学总复习《一次函数》专项复习练习有答案

北师大版八年级上册《第四章一次函数》本章质量评估试卷有答案

2018年中考数学《一次函数》同步提分训练(有答案)

温馨提示:本站所有教学资源均是完全免费提供!内容简介下方即有下载连接!

下载步骤:直接点击即可下载

注意:1.源文件中的公式,图片,在下边的内容预览中被忽略!(文档内容预览在最下方)

    2.下载链接在下方,无需注册直接可下载!

文档内容预览:
  
第12章 一次函数
 
一、解答题(共30小题)
1.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)求出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车行驶多长时间时,两车恰好相距50km.

2.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:
(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按  元收取;超过5吨的部分,每吨按  元收取;
(2)请写出y与x的函数关系式;
(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?

3.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是  千米/时,乙车的速度是  千米/时,点C的坐标为  ;
(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;
(3)求甲车到达B市时乙车已返回A市多长时间?

4.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;
(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.

5.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲乙两地之间的距离为  千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.

6.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
桌椅型号
一套桌椅所坐学生人数(单位:人)
生产一套桌椅所需木材(单位:m3)
一套桌椅的生产成本(单位:元)
一套桌椅的运费(单位:元)

A
2
0.5
100
2

B
3
0.7
120
4

设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.
7.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.
(1)每条生产线原先每天最多能组装多少台产品?
(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?
8.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.
(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;
(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?
9.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:
甲印刷社收费y(元)与印制数x(张)的函数关系如下表:
印制x(张)
…
100
200
300
…

收费y(元)
…
15
30
45
…

乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.
(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;
(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?
(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?
10.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:
(1)求出蜡烛燃烧时y与x之间的函数关系式;
(2)求蜡烛从点燃到燃尽所用的时间.

11.为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:
甲林场
乙林场

 购树苗数量
 销售单价
 购树苗数量

销售单价

 不超过1000棵时
 4元/棵
 不超过2000棵时
 4元/棵

 超过1000棵的部分
 3.8元/棵
 超过2000棵的部分
 3.6元/棵

设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为  元,若都在乙林场购买所需费用为  元;
(2)分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?
12.在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为x(时),1号队员和其他队员行进的路程分别为y1、y2(千米),并且y1、y2与x的函数关系如图所示:
(1)1号队员折返点A的坐标为  ,如果1号队员与其他队员经过t小时相遇,那么点B的坐标为  ;(用含t的代数式表示)
(2)求1号队员与其他队员经过几小时相遇?
(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?

13.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.
(Ⅰ)根据题意,填写下表:
购买种子的数量/kg
1.5
2
3.5
4
…

付款金额/元
7.5
  
16
  
…

(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;
(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.
14.某经销商从市场得知如下信息:

A品牌手表
B品牌手表

进价(元/块)
700
100

售价(元/块)
900
160

他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?
(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?
15.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.
(1)求甲、乙两种油茶树苗每株的价格;
(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?
(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?
16.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:
(1)A、C两村间的距离为  km,a=  ;
(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?

17.今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.
(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;
(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
18.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:

进价(元/千克)
售价(元/千克)

甲种
5
8

乙种
9
13

(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?
第12章 一次函数
参考答案与试题解析
 
一、解答题(共30小题)
1.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)求出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车行驶多长时间时,两车恰好相距50km.

【考点】一次函数的应用;一元一次方程的应用.
【专题】行程问题;数形结合.
【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;
(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;
(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.
【解答】解:(1)由题意,得
m=1.5﹣0.5=1.
120÷(3.5﹣0.5)=40,
∴a=40.
答:a=40,m=1;

(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得
40=k1,
∴y=40x
当1<x≤1.5时,
y=40;
当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得
,
解得:,
∴y=40x﹣20.
y=;

(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得
,
解得:,
∴y=80x﹣160.
当40x﹣20﹣50=80x﹣160时,
解得:x=.
当40x﹣20+50=80x﹣160时,
解得:x=.
=,.
答:乙车行驶小时或小时,两车恰好相距50km.
【点评】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.
 
2.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:
(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6 元收取;超过5吨的部分,每吨按 2.4 元收取;
(2)请写出y与x的函数关系式;
(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?

【考点】一次函数的应用.
【分析】(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;
(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;
(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.
【解答】解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;

(2)当0≤x≤5时,设y=kx,代入(5,8)得
8=5k,
解得k=
∴y=x;
当x>5时,设y=kx+b,代入(5,8)、(10,20)得
,
解得k=,b=﹣4,
∴y=x﹣4;
综上所述,y=;

(3)把y=代入y=x﹣4得
x﹣4=,
解得x=8,
5×8=40(吨).
答:该家庭这个月用了40吨生活用水.
【点评】此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.
 
3.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是 60 千米/时,乙车的速度是 96 千米/时,点C的坐标为 (,80) ;
(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;
(3)求甲车到达B市时乙车已返回A市多长时间?

【考点】一次函数的应用.
【专题】数形结合.
【分析】(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;
(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;
(3)求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.
【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,
乙车的速度:80×2÷(2﹣)=96千米/时;
点C的横坐标为2++=,纵坐标为80,坐标为(,80);

(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得
,
解得,
所以y与x的函数关系式y=﹣96x+384(≤x≤4);

(3)(260﹣80)÷60﹣80÷96
=3﹣
=(小时).
答:甲车到达B市时乙车已返回A市小时.
【点评】此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.
 
4.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.
(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;
(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.

【考点】一次函数的应用;一元二次方程的应用.
【专题】应用题.
【分析】(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;
(2)把y=620代入(1)求得答案即可;
(3)利用水费+污水处理费=600元,列出方程解决问题.
【解答】解:(1)设y关于x的函数关系式y=kx+b,
∵直线y=kx+b经过点(50,200),(60,260)
∴
解得
∴y关于x的函数关系式是y=6x﹣100;

(2)由图可知,当y=620时,x>50,
∴6x﹣100=620,
解得x=120.
答:该企业2013年10月份的用水量为120吨.

(3)由题意得6x﹣100+(x﹣80)=600,
化简得x2+40x﹣14000=0
解得:x1=100,x2=﹣140(不合题意,舍去).
答:这个企业2014年3月份的用水量是100吨.
【点评】此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.
 
5.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲乙两地之间的距离为 560 千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.

【考点】一次函数的应用.
【专题】应用题.
【分析】(1)根据函数图象直接得出甲乙两地之间的距离;
(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;
(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.
【解答】解:(1)由题意可得出:甲乙两地之间的距离为560千米;
故答案为:560;

(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,
∴设慢车速度为3xkm/h,快车速度为4xkm/h,
∴(3x+4x)×4=560,x=20,
∴快车的速度是80km/h,慢车的速度是60km/h.

(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,
当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,
∴D(8,60),
∵慢车往返各需4小时,
∴E(9,0),
设DE的解析式为:y=kx+b,
∴,
解得:.
∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).

【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E点坐标是解题关键.
 
6.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
桌椅型号
一套桌椅所坐学生人数(单位:人)
生产一套桌椅所需木材(单位:m3)
一套桌椅的生产成本(单位:元)
一套桌椅的运费(单位:元)

A
2
0.5
100
2

B
3
0.7
120
4

设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.
【考点】一次函数的应用.
【专题】应用题;函数思想.
【分析】(1)利用总费用y=生产桌椅的费用+运费列出函数关系,根据需用的木料不大于302列出一个不等式,两种桌椅的椅子数不小于学生数1250列出一个不等式,两个不等式组成不等式组得出x的取值范围;
(2)利用一次函数的增减性即可确定费用最少的方案以及费用.
【解答】解:(1)设生产A型桌椅x套,则生产B型桌椅的套数(500﹣x)套,
根据题意得,,
解这个不等式组得,240≤x≤250;
总费用y=(100+2)x+(120+4)(500﹣x)=102x+62000﹣124x=﹣22x+62000,
即y=﹣22x+62000,(240≤x≤250);

(2)∵y=﹣22x+62000,﹣22<0,
∴y随x的增大而减小,
∴当x=250时,总费用y取得最小值,
此时,生产A型桌椅250套,B型桌椅250套,最少总费用y=﹣22×250+62000=56500元.
【点评】本题考查了一次函数的应用,一元一次不等式组的应用,此类题目难点在于从题目的熟练关系确定出两个不等关系,从而列出不等式组求解得出x的取值范围.
 
7.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产
…………………………
余下内容暂不显示,请下载查看完整内容
关于资源的下载性声明:千教网本身不提供任何资源的下载服务,也不会保存任何数据在服务器上。所有资源的下载,均源于互联网抓取。当该资源的原始地址失效时,您可能无法获取该资源。
关于本站 | 免责声明 | 广告联系 | 网站提交 | 网友留言 | 联系我们