千教网
输入关键词,搜索您要的课件,教案,试题
您的位置: 千教网 >> 数学课件,教案下载 >>人教版九年级上《24.2.3切线的判定和性质》同步练习(有答案)-(数学)

欢迎您到“千教网”下载“人教版九年级上《24.2.3切线的判定和性质》同步练习(有答案)-(数学)”的资源,本文档是doc格式,无须注册即可下载,点击“本地下载”即可下载
人教版九年级上《24.2.3切线的判定和性质》同步练习(有答案)-(数学)
所属科目:数学    文件类型:doc
类别:教案/同步练习
上传日期:2018/12/5  
相关资源:
北师大九年级数学下《1.6利用三角函数测高》同步训练(有答案)

北师大九年级下《2.3确定二次函数表达式》同步训练(有答案)-(数学)

北师大九年级数学下册《2.1二次函数》同步训练(有答案)

人教版数学九年级上册《第24章圆》全章测试(有答案)

(鲁教版)数学九年级下册《5.3垂径定理》课件(1)

北师大九年级上册《第三章概率的进一步认识》检测卷(有答案)-(数学)

人教版九年级下《29.2.3由三视图确定几何体的面积或体积》课件-(数学)

人教版数学九年级下《29.2.2由三视图确定几何体》ppt课件

人教版数学九年级下《29.1.1平行投影与中心投影》ppt课件

人教版数学九年级下《29.1.2正投影》ppt课件

人教版数学九年级下《29.2.1三视图》ppt课件

《4.2由平行线截得的比例线段》同步导学练(有答案)-(浙教版数学九年级)

温馨提示:本站所有教学资源均是完全免费提供!内容简介下方即有下载连接!

下载步骤:直接点击即可下载

注意:1.源文件中的公式,图片,在下边的内容预览中被忽略!(文档内容预览在最下方)

    2.下载链接在下方,无需注册直接可下载!

文档内容预览:
  
2018-2019学年度人教版数学九年级上册同步练习
24.2.3 切线的判定和性质
一.选择题(共15小题)
1.如图,在以点O为圆心的两个同心圆中,大圆的弦AB与小圆相切,切点为C,若大圆的半径是13,AB=24,则小圆的半径是(  )

A.4 B.5 C.6 D.7
2.如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=5,AC=3,则BD的长是(  )

A.1.5 B.2 C.2.5 D.3
3.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是(  )

A.25° B.65° C.50° D.75°
4.如图,直线AB与⊙O相切于点A,⊙O的半径为1,若∠OBA=30°,则OB长为(  )

A.1 B.2 C. D.2
5.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于(  )

A.4 B.3 C.2 D.1
6.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是(  )

A.0 B.1 C.2 D.3
7.已知⊙O的半径为5,直线EF经过⊙O上一点P(点E,F在点P的两旁),下列条件能判定直线EF与⊙O相切的是(  )

A.OP=5 B.OE=OF
C.O到直线EF的距离是4 D.OP⊥EF
8.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=(  )

A.3 B.2 C.5 D.
9.如图,AB是⊙O的直径,点P是⊙O外一点,PO交⊙O于点C,连接BC,PA.若∠P=40°,当∠B等于(  )时,PA与⊙O相切.

A.20° B.25° C.30° D.40°
10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为(  )

A.1 B.3 C.5 D.1或5
11.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是(  )

A. B. C. D.
12.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E、F是AC上的点,判断下列说法错误的是(  )

A.若EF⊥AC,则EF是⊙O的切线
B.若EF是⊙O的切线,则EF⊥AC
C.若BE=EC,则AC是⊙O的切线
D.若BE=EC,则AC是⊙O的切线
13.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=CD;(4)弧AC=弧AD.其中正确的个数为(  )

A.1个 B.2个 C.3个 D.4个
14.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.直线MN与l1相交于M;与l2相交于N,⊙O的半径为1,∠1=60°,直线MN从如图位置向右平移,下列结论
①l1和l2的距离为2 ②MN=③当直线MN与⊙O相切时,∠MON=90°
④当AM+BN=时,直线MN与⊙O相切.正确的个数是(  )

A.1 B.2 C.3 D.4
15.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么(  )秒钟后⊙P与直线CD相切.

A.4 B.8 C.4或6 D.4或8
 
二.填空题(共6小题)
16.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为   .

17.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,若∠ABC=25°,则∠P的度数为   .

18.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.
(1)∠APB=   ;
(2)当OA=2时,AP=   .

19.如图所示,直线y=x﹣2与x轴、y轴分别交于M,N两点,⊙O的半径为1,将⊙O以每秒1个单位的速度向右作平移运动,当移动   s时,直线MN恰好与圆O相切.

20.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向以0.5个单位/秒的速度平移,使⊙P与y轴相切,则平移的时间为   秒.

21.已知,如图,AB是⊙O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,过E作弦GF⊥BC交圆于G、F两点,连接CF、BG.则下列结论:
①CD⊥AB;②PC是⊙O的切线;③OD∥GF;④弦CF的弦心距等于BG.则其中正确的是   (只需填序号)

 
三.解答题(共9小题)
22.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于为点D,BD与半圆O交于点E.
(1)求证:BC平分∠ABD.
(2)若DC=8,BE=4,求圆的直径.

23.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),求该圆的直径.

24.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线.

25.如图,?ABCD中,⊙O过点A、C、D,交BC于E,连接AE,∠BAE=∠ACE.
(1)求证:AE=CD;
(2)求证:直线AB是⊙O的切线.

26.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若∠P=35°,求∠ABP的度数;
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.

27.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.
(1)求证:CD是⊙O的切线.
(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.

28.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线
BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.

29.如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

30.如图,AB是半径为2的⊙O的直径,直线m与AB所在直线垂直,垂足为C,OC=3,点P是⊙O上异于A、B的动点,直线AP、BP分别交m于M、N两点.
(1)当点C为MN中点时,连接OP,PC,判断直线PC与⊙O是否相切并说明理由.
(2)点P是⊙O上异于A、B的动点,以MN为直径的动圆是否经过一个定点,若是,请确定该定点的位置;若不是,请说明理由.

 

参考答案与试题解析
 
一.选择题(共15小题)
1.【解答】解:∵AB=24,OB=OA=13,
∴BC=12;
在Rt△OCB中,
∴OC==5.
故选:B.

2.【解答】解:∵AC、AP为⊙O的切线,
∴AC=AP,
∵BP、BD为⊙O的切线,
∴BP=BD,
∴BD=PB=AB﹣AP=5﹣3=2.
故选:B.
3.【解答】解:连接OD,
∵CD是⊙O的切线,
∴∠ODC=90°,
∠COD=2∠A=40°,
∴∠C=90°﹣40°=50°,
故选:C.

4.【解答】解:∵直线AB与⊙O相切于点A,连接OA
则∠OAB=90°.
∵OA=1,
∴OB=.
故选:B.
5.【解答】解:设直线AM与⊙O相切于点K,连接OK.

∵AM是⊙O的切线,
∴OK⊥AK,
∴∠AKO=90°
∵∠A=30°,
∴AO=2OK=4,
∵OD=2,
∴AD=OA﹣OD=2,
故选:C.
6.【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
∵G是BC的中点,
∴AG=DG,
∴GH垂直平分AD,
∴点O在HG上,
∵AD∥BC,
∴HG⊥BC,
∴BC与圆O相切;
∵OG=OD,
∴点O不是HG的中点,
∴圆心O不是AC与BD的交点;
而四边形AEFD为⊙O的内接矩形,
∴AF与DE的交点是圆O的圆心;
∴(1)错误,(2)(3)正确.
故选:C.

7.【解答】解:
∵点P在⊙O上,
∴只需要OP⊥EF即可,
故选:D.
8.【解答】解:如图所示:

MK=,
故选:B.
9.【解答】解:∵PA是⊙O的切线,
∴∠PAO=90°,
∴∠AOP=90°﹣∠P=50°,
∵OB=OC,
∴∠AOP=2∠B,
∴∠B=∠AOP=25°,
故选:B.
10.【解答】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选:D.
11.【解答】解:连结OC、OD、OA,如图,
∵∠D=110°,
∴∠B=180°﹣∠D=70°,
∴∠AOC=2∠B=140°,
∵∠A=60°,
∴∠BOD=120°,
∵的度数是70°,
∴∠COD=70°,
∴∠AOD=70°,∠BOC=50°,
∴AD弧的长度==π,
∴BC弧的长度==π,
∵70π=6π?12﹣2π,
而2π>π,
∴向右移动了70π,此时与直线l相切的弧为.
故选:C.

12.【解答】解:A、如图1,连接OE,
则OB=OE,
∵∠B=60°
∴∠BOE=60°,
∵∠BAC=60°,
∴∠BOE=∠BAC,
∴OE∥AC,
∵EF⊥AC,
∴OE⊥EF,
∴EF是⊙O的切线
∴A选项正确;
B、∵EF是⊙O的切线,
∴OE⊥EF,
由A知:OE∥AC,
∴AC⊥EF,
∴B选项正确;
C、∵∠B=60°,OB=OE,
∴BE=OB,
∵BE=CE,
∴BC=AB=2BO,
∴AO=OB,
如图2,过O作OH⊥AC于H,
∵∠BAC=60°,
∴OH=AO≠OB,
∴C选项错误;
D、如图2,∵BE=EC,
∴CE=BE,
∵AB=BC,BO=BE,
∴AO=CE=OB,
∴OH=AO=OB,
∴AC是⊙O的切线,
∴D选项正确.
故选:C.



13.【解答】解:(1)连接CO,DO,
∵PC与⊙O相切,切点为C,
∴∠PCO=90°,
在△PCO和△PDO中,

∴△PCO≌△PDO(SSS),
∴∠PCO=∠PDO=90°,
∴PD与⊙O相切,
故(1)正确;

(2)由(1)得:∠CPB=∠BPD,
在△CPB和△DPB中,

∴△CPB≌△DPB(SAS),
∴BC=BD,
∴PC=PD=BC=BD,
∴四边形PCBD是菱形,
故(2)正确;

(3)连接AC,
∵PC=CB,
∴∠CPB=∠CBP,
∵AB是⊙O直径,
∴∠ACB=90°,
在△PCO和△BCA中,

∴△PCO≌△BCA(ASA),
∴AC=CO,
∴AC=CO=AO,
∴∠COA=60°,
∴∠CPO=30°,
∴CO=PO=AB,
∴PO=AB,
∵AB是⊙O的直径,CD不是直径,
∴AB≠CD,
∴PO≠DC,
故(3)错误;

(4)由(2)证得四边形PCBD是菱形,
∴∠ABC=∠ABD,
∴弧AC=弧AD,
故(4)正确;
故选:C.


14.【解答】解:如图1,∵⊙O与l1和l2分别相切于点A和点B,
∴OA⊥l1,OB⊥l2,
∵l1∥l2,
∴点A、B、O共线,
∴l1和l2的距离=AB=2,所以①正确;
作NH⊥AM,如图1,则四边形ABNH为矩形,
∴NH=AB=2,
在Rt△MNH中,∵∠1=60°,
∴MH=NH=,
∴MN=2MH=,所以②正确;
当直线MN与⊙O相切时,如图2,∠1=∠2,∠3=∠4,
∵l1∥l2,
∴∠1+∠2+∠3+∠4=180°,
∴∠1+∠3=90°,
∴∠MON=90°,所以③正确;
过点O作OC⊥MN于C,如图2,
∵S四边形ABNM=S△OAM+S△OMN+S△OBN,
∴?1?AM+?1?BN+MN?OC=(BN+AM)?2,
即(AM+BN)+MN?OC=AM+BN,
∵AM+BN=,MN=,
∴OC=1,
而OC⊥MN,
∴直线MN与⊙O相切,所以④正确.
故选:D.


15.【解答】解:由题意CD与圆P1相切于点E,点P1只能在直线CD的左侧,
∴P1E⊥CD
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2cm
又∵OP=6cm
∴P1P=4cm
∴圆P到达圆P1需要时间为:4÷1=4(秒),
或P1P=8cm
∴圆P到达圆P1需要时间为:8÷1=8(秒),
∴⊙P与直线CD相切时,时间为4或8秒.
故选:D.
 
二.填空题(共6小题)
16.【解答】解:若运动后⊙P与y轴相切,
则点P到y轴的距离为1,此时P点坐标为(﹣1,0)或(1,0),
而﹣1﹣(﹣4)=3,1﹣(﹣4)=5,
所以点P的运动距离为3或5.
故答案为3或5.
17.【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,
∵PA是⊙O的切线,AB是过切点A的直径,
∴∠PAO=90°,
∴∠P=90°﹣∠AOP=40°,
故答案为:40°.
18.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,
∴∠AOB=180°﹣2×30°=120°,
∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四边形OAPB中,
∠APB=360°﹣120°﹣90°﹣90°=60°,
故答案为:60°.

(2)如图,连接OP;

∵PA、PB是⊙O的切线,
∴PO平分∠APB,即∠APO=∠APB=30°,
又∵在Rt△OAP中,OA=3,∠APO=30°,
∴AP===2,
故答案为:2.
19.【解答】解:作EF平行于MN,且与⊙O切,交x轴于点E,交y轴于点F,如图所示.
设直线EF的解析式为y=x+b,即x﹣y+b=0,
∵EF与⊙O相切,且⊙O的半径为1,
∴b2=×1×|b|,
解得:b=或b=﹣,
∴直线EF的解析式为y=x+或y=x﹣,
∴点E的坐标为(,0)或(﹣,0).
令y=x﹣2中y=0,则x=2,
∴点M(2,0).
∵根据运动的相对性,且⊙O以每秒1个单位的速度向右作平移运动,
∴移动的时间为2﹣秒或2+秒.
故答案为:2﹣或2+.

20.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;
当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.
故答案为2或10
21.【解答】解:连接BD、OC、AG,过O作OQ⊥CF于Q,OZ⊥BG于Z,
∵OD=OB,
∴∠ABD=∠ODB,
∵∠AOD=∠OBD+∠ODB=2∠OBD,
∵∠AOD=2∠ABC,
∴∠ABC=∠ABD,
∴弧AC=弧AD,
∵AB是直径,
∴CD⊥AB,
∴①正确;
∵CD⊥AB,
∴∠P+∠PCD=90°,
∵OD=OC,
∴∠OCD=∠ODC=∠P,
∴∠PCD+∠OCD=90°,
∴∠PCO=90°,
∴PC是切线,∴②正确;
假设OD∥GF,则∠AOD=∠FEB=2∠ABC,
∴3∠ABC=90°,
∴∠ABC=30°,
已知没有给出∠B=30°,∴③错误;
∵AB是直径,
∴∠ACB=90°,
∵EF⊥BC,
∴AC∥EF,
∴弧CF=弧AG,
∴AG=CF,
∵OQ⊥CF,OZ⊥BG,
∴CQ=AG,OZ=AG,BZ=BG,
∴OZ=CQ,
∵OC=OB,∠OQC=∠OZB=90°,
∴△OCQ≌△BOZ,
∴OQ=BZ=BG,
∴④正确.
故答案为:①②④.

 
三.解答题(共9小题)
22.【解答】(1)证明:连结OC,如图,
∵CD为切线,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:连结AE交OC于G,如图,
∵AB为直径,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四边形CDEG为矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==4,
即圆的直径为4.

23.【解答】解:过圆心O′作y轴的垂线,垂足为D,连接O′A,
∵O′D⊥BC,
∴D为BC中点,
∴BC=16﹣4=12,OD=6+4=10,
∵⊙O′与x轴相切,
∴O′A⊥x轴,
∴四边形OAO′D为矩形,
半径O′A=OD=10,

24.【解答】解:(1)BD=DC.理由如下:连接AD,
∵AB是直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;

(2)∵AD是等腰△ABC底边上的中线,
∴∠BAD=∠CAD,
∴,
∴BD=DE.
∴BD=DE=DC,
∴∠DEC=∠DCE,
△ABC中,AB=AC,∠A=30°,
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∴∠DEC=75°,
∴∠EDC=180°﹣75°﹣75°=30°,
∵BP∥DE,
∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,
∵OB=OP,
∴∠OBP=∠OPB=45°,
∴∠BOP=90°;

(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,
在Rt△AOG中,∠OAG=30°,
∴=,
又∵==,
∴=,
∴=,
又∵∠AGO=∠CGP,
∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,
∴OP⊥PC,
∴CP是⊙O的切线;

25.【解答】解:(1)∵四边形ABCD是平行四边形
∴AB=CD,∠B=∠ADC
∵四边形ADCE是⊙O内接四边形
∴∠ADC+∠AEC=180°
∵∠AEC+∠AEB=180°
∴∠ADC=∠AEB
∴∠B=∠AEB
∴AE=CD
(2)如图:连接AO,并延长AO交⊙O交于点F,连接EF.

∵AF是直径
∴∠AEF=90°
∴∠AFE+∠EAF=90°
∵∠BAE=∠ECA,∠AFE=∠ACE
∴∠AFE=∠BAE
∴∠BAE+∠EAF=90°
∴∠BAF=90°且AO是半径
∴直线AB是⊙O的切线
26.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,
∴AB⊥AP,
∴∠BAP=90°;
又∵∠P=35°,
∴∠AB=90°﹣35°=55°.

(2)证明:如图,连接OC,OD、AC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角),
∴∠ACP=90°;
又∵D为AP的中点,
∴AD=CD(直角三角形斜边上的中线等于斜边的一半);
在△OAD和△OCD中,

∴△OAD≌△OCD(SSS),
∴∠OAD=∠OCD(全等三角形的对应角相等);
又∵AP是⊙O的切线,A是切点,
∴AB⊥AP,
∴∠OAD=90°,
∴∠OCD=90°,即直线CD是⊙O的切线.
27.【解答】(1)证明:如图1,连结OC,
∵点O为直角三角形斜边AB的中点,
∴OC=OA=OB.
∴点C在⊙O上,
∵BD=OB,
∴AB=DO,
∵CD=CA,
∴∠A=∠D,
∴△ACB≌△DCO,
∴∠DCO=∠ACB=90°,
∴CD是⊙O的切线;
(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,
∵∠ABC=90°﹣∠A=90°﹣30°=60°,
∴BE=BCcos60°=8×=4.


28.【解答】
…………………………
余下内容暂不显示,请下载查看完整内容
关于资源的下载性声明:千教网本身不提供任何资源的下载服务,也不会保存任何数据在服务器上。所有资源的下载,均源于互联网抓取。当该资源的原始地址失效时,您可能无法获取该资源。
关于本站 | 免责声明 | 广告联系 | 网站提交 | 网友留言 | 联系我们